
CSC363 Tutorial 8
What does P stand for?

Paul “sushi enjoyer” Zhang

University of Humongus Chungus Amogus Pekora

March 9, 2021

1 / 24

What does P stand for?

P stands for Practical!1

Not really. P stands for polynomial-time. It is formally defined as

P =
∞⋃

k=1
TIME(nk)

where TIME(nk) is the set of languages that can be decided by a O(nk)
TM.

Less formally, P is the set of languages that can be decided by a poly-time
TM.

Remember: just because some algorithm for deciding a language A isn’t
poly-time does not mean all algorithms for deciding A aren’t poly-time.

1not really. some problems that we think are not in P are still of practical
importance! for example, the Travelling Salesman Problem (TSP) is believed to not
be in P, yet we need it for stuff like, uh, sushi delivery?

2 / 24

What does P stand for?

P stands for Practical!1

Not really. P stands for polynomial-time. It is formally defined as

P =
∞⋃

k=1
TIME(nk)

where TIME(nk) is the set of languages that can be decided by a O(nk)
TM.

Less formally, P is the set of languages that can be decided by a poly-time
TM.

Remember: just because some algorithm for deciding a language A isn’t
poly-time does not mean all algorithms for deciding A aren’t poly-time.

1not really. some problems that we think are not in P are still of practical
importance! for example, the Travelling Salesman Problem (TSP) is believed to not
be in P, yet we need it for stuff like, uh, sushi delivery?

2 / 24

What does P stand for?

P stands for Practical!1

Not really. P stands for polynomial-time. It is formally defined as

P =
∞⋃

k=1
TIME(nk)

where TIME(nk) is the set of languages that can be decided by a O(nk)
TM.

Less formally, P is the set of languages that can be decided by a poly-time
TM.

Remember: just because some algorithm for deciding a language A isn’t
poly-time does not mean all algorithms for deciding A aren’t poly-time.

1not really. some problems that we think are not in P are still of practical
importance! for example, the Travelling Salesman Problem (TSP) is believed to not
be in P, yet we need it for stuff like, uh, sushi delivery?

2 / 24

Learning objectives this tutorial

By the end of this tutorial, you should...
I Remove turingmachinesimulator.com from your bookmarks in

Microsoft Edge (or whichever browser you use), cuz we are past the
low-level Turing machine stuff :(

I Watch the video on P vs NP pinned on Piazza, if you haven’t yet!
I Have a brief image of the “computability hierarchy” in the back of

your head.
I Understand what NP means. Now you get to explain the P = NP

problem to your friends and be a cool person or something smh.
helo fish.jpg certified readings: 7.1-7.3, probably, in Sipser’s book.

3 / 24

turingmachinesimulator.com

When Turing machine is sus

A non-deterministic Turing machine takes the next CSC363 quiz. It
chooses the correct answers.

A non-deterministic Turing machine forgets its bank account password. It
chooses the correct password.

A non-deterministic Turing machine plays the hit game amogus. It
chooses the imposter to vote out.

Recall (i’m not sure if you do, from the tutorial 2 weeks ago, but meh):
we say a non-deterministic turing machine accepts an input if and only if
there is some execution path for the NTM that results in acceptance.

Unfortunately, there isn’t any
nondeterministicturingmachinesimulator.com out there (unless you
want to create it!).

4 / 24

nondeterministicturingmachinesimulator.com

When Turing machine is sus

A non-deterministic Turing machine takes the next CSC363 quiz. It
chooses the correct answers.

A non-deterministic Turing machine forgets its bank account password. It
chooses the correct password.

A non-deterministic Turing machine plays the hit game amogus. It
chooses the imposter to vote out.

Recall (i’m not sure if you do, from the tutorial 2 weeks ago, but meh):
we say a non-deterministic turing machine accepts an input if and only if
there is some execution path for the NTM that results in acceptance.

Unfortunately, there isn’t any
nondeterministicturingmachinesimulator.com out there (unless you
want to create it!).

4 / 24

nondeterministicturingmachinesimulator.com

H-path
Task: Guess what the H stands for in HPATH.
Answer: H stands for Hamilton. Not from Ontario. Hamilton is this Irish
lad:

helo

5 / 24

H-path
Task: Guess what the H stands for in HPATH.
Answer: H stands for Hamilton. Not from Ontario. Hamilton is this Irish
lad:

helo

5 / 24

H-path
sowwy, tikz is too tedious ;-; you’ll have to refer to my hand drawn graphs instead.

Given an (undirected) graph, a
Hamiltonian path is a path that
visits each vertex exactly once. The
Hamiltonian path problem asks
you to determine if a Hamiltonian
path exists given an arbitrary graph.

Task: Is there a Hamiltonian path in
this graph?

6 / 24

H-path
sowwy, tikz is too tedious ;-; you’ll have to refer to my hand drawn graphs instead.

Answer: yes! consider the path
v1, v2, v3 v4, v9, v8, v5, v6, v7, v10.

7 / 24

H-path
sowwy, tikz is too tedious ;-; you’ll have to refer to my hand drawn graphs instead.

Task: Is there a Hamiltonian path in this graph?
Answer: No. (I’ve checked every possible Hamiltonian path).

8 / 24

H-path
sowwy, tikz is too tedious ;-; you’ll have to refer to my hand drawn graphs instead.

Task: Is there a Hamiltonian path in this graph?
Answer: No. (I’ve checked every possible Hamiltonian path).

8 / 24

H-path
Here’s a deterministic TM M to check if there is a H-path, given a graph
input G :

M(G) :Let v1, v2, . . . , vn be the vertices of G
For every permutation P of [v1, v2, . . . , vn]:

If P is a valid path in G :
Accept

Reject

But this is very inefficient, and you probably wouldn’t try this on an
interview.
Task: Convince yourself that the above algorithm takes at least n! time,
where n is the size of the input (the number of vertices in our graph). So
the above algorithm is not polynomial time.
Task:2 Design a poly-time algorithm that solves the H-path problem.
Send it to me. I’ll give you a 10% bonus in this course.

2Don’t actually try this.
9 / 24

H-path

Here’s a non-deterministic Turing machine M to check if there is a
H-path, given a graph input G :

M(G) :Let v1, v2, . . . , vn be the vertices of G
Nondeterministically choose a permutation P of [v1, v2, . . . , vn]
If P is a valid path in G :

Accept
Reject

Task: Ask yourself, “Why does M accept input G if and only if G has a
Hamiltonian path?”

10 / 24

H-path
We’ve said that the running time of a deterministic TM M is the
function f (n) such that

f (n) = max{s : M(x) halts in exactly s steps, |x | = n}
We’ll define the running time of a non-deterministic TM M to be the
function
f (n) = max{s : for some execution path, M(x) halts in exactly s steps, |x | = n}
In other words, f (n) is the maximum time it will take to halt over all input
of length n and all execution paths.

pls dont sue me google images
11 / 24

H-path

Define NTIME(f (n)) to be the set of languages A such that there is a
O(f (n)) non-deterministic Turing machine that decides A.
Define

NP =
∞⋃

k=1
NTIME(nk).

In other words, NP is the set of languages that have poly-time NTM
deciders.

Now you can tell your friends about the P vs NP problem!
Task: Show P ⊆ NP.
Answer: Every poly-time TM is also a nondeterministic poly-time TM
(except it only has one possible execution path). So for any language A in
P, a poly-time decider for A would also be a non-deterministic poly-time
decider for A, so A ∈ NP.

12 / 24

H-path

Define NTIME(f (n)) to be the set of languages A such that there is a
O(f (n)) non-deterministic Turing machine that decides A.
Define

NP =
∞⋃

k=1
NTIME(nk).

In other words, NP is the set of languages that have poly-time NTM
deciders.

Now you can tell your friends about the P vs NP problem!
Task: Show P ⊆ NP.
Answer: Every poly-time TM is also a nondeterministic poly-time TM
(except it only has one possible execution path). So for any language A in
P, a poly-time decider for A would also be a non-deterministic poly-time
decider for A, so A ∈ NP.

12 / 24

H-path

M(G) :Let v1, v2, . . . , vn be the vertices of G
Nondeterministically choose a permutation P of [v1, v2, . . . , vn]
If P is a valid path in G :

Accept
Reject

Task: Convince yourself that the above non-deterministic Turing machine
takes polynomial time to halt, given a graph G of n vertices. Conclude
that the following language is in NP:

HPATH = {G : G is a graph with a Hamiltonian path}.

(we actually don’t know if the above language is in P! that would actually
amount to proving P = NP.)

13 / 24

sushi juice, part 2.

Task: Guess what I’ve ate today.
Task: Guess what is in this “juice”.
Task: Guess who was feeling sadistic while designing Assignment 4.

14 / 24

sushi juice, part 2.

Task: Guess what I’ve ate today.
Task: Guess what is in this “juice”.
Task: Guess who was feeling sadistic while designing Assignment 4.

14 / 24

sushi juice, part 2.

Task: Guess what I’ve ate today.
Task: Guess what is in this “juice”.
Task: Guess who was feeling sadistic while designing Assignment 4.

14 / 24

here’s a zoo.
We’ll call it the computational complexity zoo.

Don’t worry, in this course you only need to know about P, NP, coNP, and
possibly PSPACE.

15 / 24

here’s another zoo.
We’ll call it the chungus zoo.

This is what your computer science education has come to.

Anyway, just like there are many different sizes of chungus, there are many
different “computational complexity” classes. As you go up the
”computational complexity scale”, you get harder and harder problems.
Here’s all we know so far:

anything practical ⊆ P ⊆ NP ⊆ Decidable ⊆ Enumerable ⊆ Σ2 ⊆ . . .

(we don’t know if P $ NP.)
16 / 24

verification

Question: Is 221 a composite number?

17 / 24

verification

Question: Is 221 a composite number?
Answer: Yes. 221 = 13 · 17. (calculator gang)

Question: Does 13 divide 221?
Answer: Yes.

Question: Which of the above two questions is easier to answer?
Answer: Probably the “does 13 divide 221” one.

18 / 24

verification

Question: Is 221 a composite number?
Answer: Yes. 221 = 13 · 17. (calculator gang)

Question: Does 13 divide 221?
Answer: Yes.

Question: Which of the above two questions is easier to answer?
Answer: Probably the “does 13 divide 221” one.

18 / 24

verification

Question: Is 221 a composite number?
Answer: Yes. 221 = 13 · 17. (calculator gang)

Question: Does 13 divide 221?
Answer: Yes.

Question: Which of the above two questions is easier to answer?
Answer: Probably the “does 13 divide 221” one.

18 / 24

verification
The point is, checking if a number is composite is hard. We can create a
TM M that checks if a number is composite:

M(x) :For all integers 1 < i < x :
If i divides x :

Accept.
Reject.

We can be more efficient with a NTM M:

M(x) :Nondeterministically choose an integer 1 < i < x :
If i divides x :

Accept.
Reject.

19 / 24

verification

To check if a number x is composite, you’re gonna have to go through all
integers from 2 to x − 1. But verifying that a number x is composite,
given a potential factor is easier.

Recall the Hamiltonian path problem: Given a graph G , to check that it
has a H-path would require going through all permutations of the vertices,
while it is easier to verify that a given permutation of vertices defines a
valid Hamiltonian path.

Given a language A, a verifier V of A is a Turing machine such that

A = {w : V accepts (w , c) for some string c}.

20 / 24

verification

To check if a number x is composite, you’re gonna have to go through all
integers from 2 to x − 1. But verifying that a number x is composite,
given a potential factor is easier.

Recall the Hamiltonian path problem: Given a graph G , to check that it
has a H-path would require going through all permutations of the vertices,
while it is easier to verify that a given permutation of vertices defines a
valid Hamiltonian path.

Given a language A, a verifier V of A is a Turing machine such that

A = {w : V accepts (w , c) for some string c}.

20 / 24

verification

To check if a number x is composite, you’re gonna have to go through all
integers from 2 to x − 1. But verifying that a number x is composite,
given a potential factor is easier.

Recall the Hamiltonian path problem: Given a graph G , to check that it
has a H-path would require going through all permutations of the vertices,
while it is easier to verify that a given permutation of vertices defines a
valid Hamiltonian path.

Given a language A, a verifier V of A is a Turing machine such that

A = {w : V accepts (w , c) for some string c}.

20 / 24

verification
Given a language A, a verifier V of A is a (deterministic) Turing machine
such that

A = {w : V accepts (w , c) for some string c}.

For example, let

A = {x : x is a binary string that corresponds to a composite number}.

Define V to be the following TM:

V (x , y) :If 1 < y < x and y divides x :
Accept

Reject

Then x ∈ A if and only if V (x , y) accepts for some y . So

A = {x : V accepts (x , y) for some string y}

meaning V is a verifier for A.
Task: Make sense of this.

21 / 24

verification

Nice theorem! (Go read Sipser’s book.)

Theorem
A language A is in NP if and only if it has a poly-time verifier.

(in fact, I think Sipser’s book uses existence of poly-time verifier as the
definition of NP, and then shows NP =

⋃∞
k=1 NTIME(nk).)

22 / 24

verification
fun fact! we can actually determine if a number is prime in poly-time.
Search up the “AKS Primality Test”.

Not so fun fact: nobody actually uses the AKS primality test, because it’s
like O(n13) or something (which is still polynomial, but impractical!)

Fun reading: https://en.wikipedia.org/wiki/Galactic_algorithm

23 / 24

https://en.wikipedia.org/wiki/Galactic_algorithm

